Lecture Notes on Bihamiltonian Structures
and their Central Invariants

Si-Qi Liu
Contents
0 Introduction 1
1 Finite dimensional Poisson geometry 4
1.1 Basicdefinition . . . . . .. ... oo 4
1.2 Nijenhuis-Richardson bracket . . . . .. ... .. ... ... ... 5
1.3 Odd-symplectic bracket . . . ... ... ... .. 0L 8
2 Infinite dimensional Poisson geometry 9
2.1 Jet bundles and differential polynomials . . . . . ... ... ... 9
2.2  Evolutionary partial differential equations . . . . . .. ... ... 12
2.3 Conserved Quantities . . . . . . . . . . .. ... ... ... 14
2.4 Hamiltonian structures . . . . . . . ... ... L. 16
3 Hamiltonian structures 20
3.1 Presentations and examples . . . . . .. ... ... ... ... .. 20
3.2 Miura transformations . . . . . . ... ... ... L. 24
3.3 Hydrodynamic Hamiltonian structures . . . . .. ... ... ... 27
4 Bihamiltonian structures 30
4.1 Definition and semisimplicity . . . .. .. ... ... ... .. .. 30
4.2 Bihamiltonian cohomology . . . . . . . ... ... 32
4.3 Bihamiltonian vector fields . . . . .. ... ... .. L. 34
5 Central Invariants 37
5.1 Definition and properties. . . . . . . ... ... L. 37
5.2 Example: Frobenius manifolds . . . ... .. ... ... ..... 38
5.3 Example: Drinfeld-Sokolov hierarchy . . . . ... ... ... ... 39

0 Introduction

Let X be a toric Fano variety. It is well known that the quantum cohomology
QH*(X) is a semisimple Frobenius manifold, and the generating function of
all its Gromov-Witten invariants, which is usually called the total descendant
potential of X, is given by Givental’s quantization formula (see [25] for more



details):
Zx = 11(w) S ()W Ry (2)eU/?) (H Z;f;)) .
=1

Givental also proved the Virasoro conjecture in this case, that is, Zx satisfies
the Virasoro constraints

LinZx =0, m>—1,

where {L,, }mez is a set of linear differential operators satisfying the Virasoro
commuting relations [17, 22].

The preprint version of Givental’s [25] was released in Aug 2001. In the
same month, Dubrovin and Zhang put another preprint [15] on arXiv, which
showed that the total descendant potential of a semisimple Frobenius manifold
is uniquely determined by its genus zero part and the Virasoro constraints. Let
F =log Zx be the free energy of X, then expand F' with respect to the string

coupling constant A
F=>) n'F,
920

Dubrovin and Zhang derived a series of differential equations for F,; from the
Virasoro constraints, whose generating function is called the loop equation for
X, and showed that one can obtained Fj recursively from these equations.
In particular, they gave an explicit formula of F5 for an arbitrary semisimple
Frobenius manifold, which is not easy to obtain from Givental’s quantization
formula.

According to Dubrovin-Zhang’s uniqueness theorem, their approach is equiv-
alent to Givental’s quantization formula. Givental’s formula has drawn much
attention, while Dubrovin-Zhang’s approach is less well known. One possible
reason is that Dubrovin-Zhang’s preprint [15] is too long: it contains more than
180 pages, whose first 150 pages are about an axiomatic framework for inte-
grable systems that may govern a Gromov-Witten theory. Their loop equation
appears in the last 30 pages, and the main results are also proved in this last
part. It seems that to understand their main results one must read the first
150 pages, which is indeed a tough work for people not working on integrable
systems. But in my personal opinion, the last 30 pages of Dubrovin-Zhang’s
preprint is almost independent of the first 150 pages, so one can read it directly.

In an informal workshop on Landau-Ginzburg B-model held in University
of Michigan, Mar 10-14, 2014, I gave a short introduction to Dubrovin-Zhang’s
loop equation, especially on the case with X = point. I planned to give more
details for general cases in the present lecture notes. But Zhang told me that
Dubrovin and he have been working on a similar introductory paper for months,
and there is also a good introduction to this subject in Dubrovin’s new paper
[8], so I decide to talk about something else — something on the first 150 pages
of Dubrovin and Zhang’s preprint [15].

Saying one can skip the first 150 pages of [15] doesn’t mean that this part
is not important. Instead, this part is more general, so it includes not only the
cases in which Givental’s formula or Dubrovin-Zhang’s loop equation work but
also the cases make these two approaches fail. For example, Dubrovin-Zhang’s
axiom system consists of four axioms (see [15] for more details):

e BH=Bihamiltonian structure



e QT=Quasi-triviality
e TS=Tau structure
e VS=Linearizable Virasoro symmetries

If an integrable system satisfies all these axioms, the corresponding total descen-
dant potential must be given by Givental’s formula or Dubrovin-Zhang’s loop
equation. But, if it satisfies all but the last axiom, one can also define its total
descendant potential, and this potential is not equivalent to Givental’s one in
general. Recently, Wu showed that the Drinfeld-Sokolov hierarchies of BCFG
types are integrable systems of this kind [34]. Then Ruan, Zhang and I show
that the generating functions of FJRW invariants of boundary singularities of
BCFG type gives tau functions of these integrable systems [27]. In particular,
we show that the BCFG Drinfeld-Sokolov hierarchies must be not equivalent
to Dubrovin-Zhang’s hierarchies, so the generating function of BCFG FJRW
invariants must be not given by Givental’s formula.

To show that two integrable systems are not equivalent is highly nontrivial.
One need to find out the orbits of a class of integrable systems under the action of
a certain transformation group. Such a classification problem is first precisely
stated in Dubrovin-Zhang’s [15] for the integrable systems satisfying the BH
axiom. We introduced the concept of central invariants, which can be regarded
as coordinates on the orbit space, and answered the uniqueness part of this
classification problem [28, 10]. As a byproduct, we also show that the QT axiom
is a corollary of the BH axiom, which is also conjectured and partially proved
in [15]. The existence part of the above classification problem is also resolved
recently. In [30], we founded a new framework for the computation of the
cooresponding bihamiltonian cohomologies, and proved the existence theorem
for the simplest case, that is the bihamiltonian structure of the Korteweg-de
Vries hierarchy. We planned to consider the general cases in [12] by using a
similar argument. This is not an easy generalization, because our computation
method, even for the simplified one, is still very complicated. In a recent preprint
[2] (c.f. [1]), Carlet, Posthuma, and Shadrin developed some new computing
techniques based on our approach, several interesting spectral sequences, and
some homotopy formulae, then proved the existence theorem for the general
cases.

The central invariants of a bihamiltonian structure are a set of functions of
one variable. For the integrable systems satisfying Dubrovin-Zhang’s four ax-
ioms, all central invariants must be 1/24. On the other hand, we computed the
central invariants for the bihamiltonian structure for Drinfeld-Sokolov hierar-
chies [11]. For the BCFG cases, their central invariants are unequal constants,
so they are not equivalent to Dubrovin-Zhang’s integrable hierarchies.

In these lecture notes, I will give an introduction to our results with as much
details as possible. In Section 1, I recall some basic facts of finite dimensional
Poisson geometry. We introduce the Schouten-Nijenhuis bracket in an unusual
way, which can be also used in the infinite dimensional case. Then we give the
definition of Hamiltonian structures for partial differential equations in Section
2. In Section 3 and 4, we prove some results on the relation between classifi-
cation problems of (bi)hamiltonian structures and their cohomologies. We also
prove a Darboux theorem for certain Hamiltonian structures. Then we intro-
duce the notion of central invariants of a semisimple bihamiltonian structure in



Section 5. In the last subsection, we give an introduction to the Drinfeld-Sokolov
bihamiltonian structure and their central invariants.

1 Finite dimensional Poisson geometry

1.1 Basic definition

Let M be a smooth manifold of dimension n, and Ay = C*°(M) be the algebra
of smooth functions on M (we will explain why we use this notation in the
next section). A Poisson bracket on M is, by definition, a bilinear map {, } :
Ap X Ag — Ay satisfying the following conditions:

Skew-symmetry: {f, g} + {g,f} =0, (1.1)
Jacobi identity: {{fv g}a h} + {{97 h}7 f} + {{ha f}ag} =0, (12)
Leibniz’s rule: {f-g,h} = f-{g,h} +{f,h} g, (1.3)

where f,g,h € Ap, and - is the multiplication of Ay. The manifold M is called
a Poisson manifold if it is equipped with a Poisson bracket.

The condition (1.1) and (1.2) show that (A, {,}) forms a Lie algebra,
and the condition (1.3) implies (by using Hadamard’s Lemma) that the Poisson
bracket is locally given by !

9f 9g

= P8 ()= =L 1.4

(o= P L 09 (14)
where (ul,...,u") is a set of local coordinates on M. The functions P*#(u) are

actually given by
fu uP}y = P9 (),

and they are called the components of the Poisson bracket {,} in the local
coordinates system (ul,... ,u").

The formula (1.4) shows that we can introduce a bivector, i.e. a skew-
symmetric tensor of (2,0) type,

P= Paﬁ(u)i A 0

5w " ouF (1.5)

and then write the Poisson bracket as the following form

{f.9} = (P,df ndg),

where (,) is the standard pairing between tensors of (2,0) and (0,2) types.
The tensor P is called the Poisson tensor or Poisson structure of the Poisson
manifold (M, {,}).

The condition (1.2) of the Poisson bracket {, } is equivalent to the following
condition on the components of P:

af3 By Yo
0P L OPP L, OP
ou’ ou’ ou’
n this paper, summation over repeated Greek indexes is always assumed, and we don’t
sum over Latin indexes.

PP =0. (1.6)




This condition also has a coordinate-free form, which requires the notion of
Schouten-Nijenhuis bracket.

The Schouten-Nijenhuis bracket is a bilinear operation defined on the space
A* =T (A*T(M)) of polyvectors. There are several equivalent ways to define
this operation. We give two of them, which can be easily generalized to the
infinite-dimensional case.

1.2 Nijenhuis-Richardson bracket

Let P € AP be a p-vector. We define its action on p smooth functions f,..., f, €
Ap as follow:

P(flv'“vfp):<P’df1/\"'/\dfp>a

so P can be regarded as a linear map from AP A, to Ap.

Let V* = Hom(A*Ag, Ag), whose elements are called generalized polyvec-
tors. In particular, we have V° = A = Aj, and V<0 = 0. We regard A* as a
subspace of V*, and it is easy to see that P € VP belongs to A? if and only if

P(f'gvf27"'vfp):f'P(gvaa"wfp)+P(f7f2a~'~7fp)'g (17)

for all f, g, fa,..., fp € Ao.

Theorem 1.1 ([29]) (a) There exists a unique bilinear map [,] : VP x V4 —
Vr+a=L satisfying the following conditions:
[P7f](f2>"')fp):P(f’an'~'7fP)7 (18)
[Pv Q] = (_1)pq[ 7P]a (19)
([P, Q, f1+ (=1)"[[Q, f], P] + [[f, P], Q] = 0, (1.10)

where P € VP, Q € VI, and f, fo,...,fp € Ao. It is called the Nijenhuis-
Richardson bracket of the generalized polyvectors.

(b) The Nijenhuis-Richardson bracket satisfies the following graded Jacobi
identity:

(=P [[P, QL Bl + (-1)®[[Q, R], P| + (—1)"[[R, P], Q] = 0, (1.11)
where Pe VP, Q €V, and Re V".

Proof:  (a) We prove uniqueness first. Let P € VP, Q € V9. When p = ¢ =0,
[P, Q] must vanish, since V=1 = 0. When (p, ¢) = (1,0), then the property (1.8)
implies that [P, Q] = P(Q). The (0,1) case is similar, due to the property (1.9).
When (p,q) = (1,1), take an f € Ap, then we have

[P7Q](f) = [[P>Q]7f] = [[QquP] - [[f7P],Q]
=P(Q(f)) — Q(P(f)).

In general, take f, fa, ..., fp+q—1, Wwe have

[Pa Q](f7 f27 .- -’fPJrqfl) = [[PvQ]afo% .- "fPJrqfl)
== ((=D®[Q, f, Pl + [[f. P1,Q]) (f2, - - - fp+q—1);



so the bracket defined on VP x V¢ is determined by the brackets defined on
YP~L x V7 and VP x V971, Since we have shown the uniqueness for the 0 <
p,q < 1 cases, it also holds true for general cases. The uniqueness is proved.

To prove the existence, we recall the product A : VP x V9 — VYPT9~1 defined
in [31]:

Pi\Q(f17~'~afp+qfl) = Z (_1)|IIP(Q(fi17"'7fiq)7fiq+17"'7fip+q—1)7

I1€Sy .4

where S}, 4 is the following subset of the symmetry group Sp44—1:

i< <y }
b

Spa=<1="_>1,...,1 _1)ES —1| - .
D,q ( ) ) “ptq ) p+q Gga1 < v <lpig-1

and |I| is the parity of the permutation I.
The bracket [,] can be defined as

[P,Q] = (—=1)PtDIPAQ + (—1)PQAP.

We need to show that this bracket satisfies the conditions (1.8)-(1.10). The con-
dition (1.8) and (1.9) are easy to verify. In particular, if P € VP, f, fa,..., fp €
Ag, we have

[P?f](f27~-'7fp>:P/i\f<f2a--'7fp):P(faf27~-~7fp>'

We denote i¢(P) = [P, f], then one can show that
if(PAQ) = PRif(Q) + (=1)"" i (P)AQ,

which implies the condition (1.10). The existence is proved.

(b) We prove the identity by induction on p + ¢+ r. When r = 0, it is just
the condition (1.10). When r > 0, we assume that the identity (1.11) holds true
for any p’, ¢, satisfying p’ +¢ +7' <p+q+7r. Let Pe VP, Qe VI, Re V",
and take an f € Ay, one can show that

ir ([P, Q) R]) = [[if(P), QL. Rl + (=LP[[P,i(Q)], B] + (=1)" ™[, Q] if(R)].

Then by using the induction assumption, we obtain

Z.f ((_1)pr[[P’ Q]7 R] + (_1)qp[[Q7 R]7 P} + (_1)Tq[[R7 PL Q]) =0,
which implies the identity (1.11). The theorem is proved. O

Remark 1.2 The above theorem only used the fact that Agy is a linear space.
In next section, we will replace Ay by another linear space to define the corre-
sponding bracket operation on that space.

Proposition 1.3 The Nijenhuis-Richardson bracket can be restricted onto the
subspace N*, that is, if P € AP, Q € A%, then [P,Q] € APT971. The restricted
bracket [,] is called the Schouten-Nijenhuis bracket of polyvectors.

Proof: ~ We prove the proposition by induction on p + q.



When (p,q) = (0,0),(1,0),(0,1),(2,0),(0,2), the proposition is trivially
true. When (p, q) = (1, 1), take f,g € Ap, we have
(

[P, QI(f - 9)

=P(Q(f-9) —Q(P(f-9))
=P(f-Q9) +9-Q(f)) - Q(f- P(9) +9- P(f))
=(f-P(Q(9)) + P(f) - Q9) +g- P(Q(f)) + P(9) - Q(f))
— (/- Q(P(9) + Q) - P(g) +9-QP(f) +Qg) - P(f))
Q]

)
f-1P.Q9) + g - [P, QI(f),

so [P,Q] € A'. From now on we can assume p + q > 3.
Suppose the proposition holds true for any p’,q" satisfying p’ + ¢’ < p+ ¢,
take f, g, fa,..., fo+q—1 € Ao, we have

[P’Q](f'gaf%-'-afp*HZ*l)
:([Zf2(P)vQ} + (_1)p[Pa'Lf2(Q)])(f ! g?f?n <. ~vfp+¢171)'

Note that iz, (P) € AP7! if, (Q) € A971, so we have

[Zf2< ) Q](f'g7f3a---7fp+q—l)
f [Zf2( ) Q](gvffiv'"vprrQ*l)—i_g'[ifz(P)ﬂQ](fvf&~"7fp+lI*1)

[P’ifQ(Q)](f'gaf&"'vfp-‘rq—l)
:f : [P7Zf2<Q)](g7f3a . -afp*H]*l) +g . [P’Zf2(Q)](f7 f37' . '7fP+Q*1)a

so we have

[PvQ](f 'gv.an""fp-‘rq—l)
:f ) [P7Q](gaf25-~-afp+q—1)) +g [P?Q](fa f27~-~,fp+q—1))~

The proposition is proved. O
Lemma 1.4 Let P € A? be a bivector, the following conditions are equivalent
i) P gives the Poisson tensor of a Poisson bracket {,};
it) [P,P] =0;
i) The map dp : A* — A*T1, Q — [P, Q)] satisfies d3 = 0.
Proof: For any P,Q € V? and f,g,h € Ap, we have

[P, QI(f,9,h)
=P(Q(f,9),h) + P(Q(g,h), [) + P(Q(h, [), 9)
+Q(P(f,9),h) + Q(P(g,h), ) + Q(P(h, f), 9)-

Define {f, g} = P(f, g), then we have

{f.95, 0} + g h} f1 + {{h, f1 9} = *[P PI(f.g,h).



The equivalence of i) and ii) is proved.
For any @ € A%, we have

[[P’P]vQ}“F[[P’Q]’P]+HQ’P]aP]207

which implies that .
[Pv [Pv Q” = 75[[[35 P]vQ}

The equivalence of ii) and iii) is proved. O

1.3 Odd-symplectic bracket

The above axiomatic definition of Schouten-Nijenhuis bracket is not very con-
venient for computation, so we also need another one.

Let M = II(T*(M)) be the cotangent bundle of M with fiber’s parity re-
versed, that is, the fiber T;(M) at Vp € M is regarded as a super vector space
of dimension (0|n). Suppose (u',...,u") is a set of local coordinates on M, and
(61,...,0,) be the coordinates on fibers with respect to the basis dul, ..., du".
It is easy to see that, if we change the local coordinate system to another one,

say (@', ...,u"), the transformation 6 6 is given by the following formula:
- ouP
0, = —053, 1.12
EA (1.12)

which is same with the transformation formula for 81?@. Denote by Ao =

C°° (M) the superalgebra of smooth functions on M.
Lemma 1.5 There is an isomorphism 7 : Ag — A*.

Proof:  The superalgebra Ag can be decomposed as
Ao = D A,
p=0

where A{; is the subspace consisting of functions which have the following form
in a local coordinate system:

P=Porog, .0,

where P*1"%’s are components of a skew-symmetric tensor of (p,0) type. In
particular, .,218 = Ap.

We regard A* as the subspace of V whose elements obey the Leibniz’s rule
(1.7), and then define the isomorphism j as follow:

]:AIO) — AP, P y(P),
where the action of j(P) on fi,..., fp € Ao is given by

P of  f,
O, ---00q, Our  Qu»’

P s o) = 5

Then it is not hard to show that j is an isomorphism. (Il



The cotangent bundle 7" (M) has a canonical symplectic structure, so M has
a canonical odd-symplectic structure. The corresponding odd-Poisson bracket
can be written as

_9POQ ., 0P 0Q

= 90,00 T "V e ze (1.13)

[P, Q] 4,

where P € AP, Q € AJ. Note that this bracket has other variants (see [24] for
example). Here we choose the one that is equivalent to the Schouten-Nijenhuis
bracket introduced in the last section.

Proposition 1.6 We have the following identity:
I[P, Ql4,) = (P), 5(Q)]. (1.14)

Proof: ~ We only need to show that [,]; also satisfies the conditions (1.8)-
(1.10). This is not a hard task, so we left it to readers. The proposition is
proved. O

From now on, we can identify Ay and A*, then write [, ] A, s [,]- A bivector
(1.5) can be written as the following form:

1
P= 5mﬁf)aeﬁ.

It is a Poisson structure if and only if [P, P] = 0. Here the bracket [,] can be
computed by using (1.13).
If X =X° aza is a vector field on M, we can identity it with X = X“6,,.

Let H € Ay, the Hamiltonian vector field X of H is defined as Xy = [P, H],
then we have

(Xr, Xc| = X(ray-

In local coordinates, we have

OH
Xy = X505, where X2 = poP S
u

so the corresponding ODE can be written as

u) =Xy = {H "}

2 Infinite dimensional Poisson geometry

2.1 Jet bundles and differential polynomials

In this section, we will define the notion of Hamiltonian structure for an evolu-
tionary partial differential equation of the following form:

uf = X¥u,u’\u”,..0), a=1,...,n, (2.1)

where u®(x,t) are n smooth functions of real variables z and ¢, and X® are
certain functions of u = (ul,...,u"), ' = (ul,...,u?), ..., and so on.

A significant difference between the above equation and usual evolutionary
PDE is that it can contain higher derivatives of u® of any orders, because inte-

grable systems arising from Gromov-Witten theories often take this form. For



example, if X = P!, it is well known that the corresponding integrable system
is the Toda lattice hierarchy [35, 23, 32, 16], whose first nontrivial member can
be written as

1
up = — (e“g(“”“) - e”Q(I)> = e“gui + Zz—:eX} (u, o, ... uD), (2.2)
¢ >1
1
u? = - (u'(z) —u'(z—¢)) =ul + ZEZXE(U,U’, CulD), (2.3)
>1

Here e = VA, and X ¢ » which are the Taylor coefficients of the left hand side, are
certain polynomials of ug,...,uf, e whose coefficients are smooth functions
of u®. If we introduce the following gradation

deg f(u) =0, deguy, =¢,

then deg X* = ¢+ 1. To describe functions X with these properties, we
need to introduce the notion of infinite jet spaces and the algebra of differential
polynomials on them.

Let N be a super manifold of dimension (n|m). For any integer k > 0,
we define the k-th jet bundle J*¥(N) of N as follow: the base manifold of the

bundle is N; the fiber manifold is (R”'m)k; the bundle map is denoted by
Tro : JE(N) — N. Suppose (z1,...,2""™) is a set of coordinates over an open
set U of N, the corresponding coordinates on the fiber are denoted by

{z° |a=1,....,.n+m, s=1,...,k}.

In particular, we also take 240 = 2 then the coordinates for the corresponding
open set 7, 4(U) of J*(N) can be written as

{z*|a=1,...,n+m, s=0,...,k}.

If we turn to another open set U with coordinates (z4,...,2""™)  then the
transition functions of the bundle J* (V) are given by
ga,l :ZB’I 0z
028’
~ 2 ~
so2 202 i g 0727
028 02P202P1’
~ 2~
508 8305 5 g2 g1 0727
028 02820261
3~
+ P11 P21 Bs,1 9°z
82638zﬁ28261 ’

The rule for these transition functions is very simple: if 2%*® gives the s-th
derivative of a curve y : (—¢,¢) — N in the local chart U, then 2** should be
the same derivatives in the local chart U. In general, we have

~o,s+1 - Bt+1 oz>®
t=0

Note that these transition functions are not linear in z%*®, so jet bundles are not
vector bundle, thought their fibers are vector spaces.

10



Definition 2.1 (a) A function f € C(J*(N)) is called a differential polyno-
mial if it is a polynomial of jet variables.

More precisely, let U be an open set ofN with coordinates (21,...,z
and Tr,;é(U) be the corresponding open set of J*(N) with coordinates

n+m)

)

{z%*|a=1,...,n+m, s=0,...,k},
then we have
f|7rk_yé(U)€C z**|a=1,...,n+m, s=1,... k]

This definition is independent of the choice of the open set U because of the
definition of transition functions (2.4).

All differential polynomials form a subalgebra of C>=(J*(N)). We denote
this subalgebra by " A®) (N).

(b) We define

deg f(2) =0 if f(z) € C®(N), degz™* =sifs>1,

and extend it to the whole ARV (N), then " A®)(N) becomes a graded ring.
For any f € A®)(N), we can uniquely decompose it as follow

f = fdmin + fdmm-i-l +eee fdmax’

where fa.., fan.. 70 and deg fq = d. The number dwin is called the valuation
of f, which is denoted by v(f). (The number dmax can be called the degree of f,
but we never use this notion.)

(¢c) We define a distance function over A (N):

dist(f,g) = e "U=9  Vf g AF(N).

Then denote by A®)(N) the completion of A®) (N} with respect to dist.
More precisely, let f € .A(k)(N), and U be an open set of N, then we have

f|ﬂ;10(U) eC®)[[z**|a=1,...,n+m, s=1,...,K].

Here the formal power series ring C(U)[[z*®]] is completed by using the dis-
tance function dist.

We are only interested in A®) (N), and will never use the notation ‘A% ()
and the distance function dist. So, to abuse of language, we will call elements of
A®) (N ) differential polynomials from now on, though they are actually formal
power series in general. To indicate the degrees of every homogeneous compo-
nents, we may write f € A®(N) as

fZfo+f1+f2+"'=f0+€f1+€2f2—|—"', where deg fq = d.

Then the topology on A(’“)(N) is just the e-adic topology.

For k > 1 > 0, there is a projection map mz; : J¥(N) — JY(N), which just
forgets the coordinates z*® with s > [. Jet bundles and the projection maps
among them form an inverse system

({Jk (N)}kzm {Wk,l}kzlzo) .

11



We denote the inverse limit of this inverse system by J> (N ), and name it the
infinite jet space of N.

The projection 7y, (k > 1) induces a pullback map 7 ; : AD(N) — AB(N).
The differential polynomial algebras and the pullback maps among them form
a direct system

({Aw)(N)}kZO, {W;;J}kZlZO).

We denote the direct limit of this direct system by A(N), and name it the
differential polynomial ring of N. R R
Note that the maps  ; are all injective, so every A®)(N) can be regarded

as a subalgebra of A(N). These subalgebras define a filtration on A(N):
ANy c AVN) c AD(N) c--- c AN).
The maps m; ; preserve the gradation on AF)(N), so A(N) also has a gradation

AN) =P AuN),  Au(N) = {f € AD(N)|deg f = d},

d>0
which is called the standard gradation of A(N). In particular, Ay(N) = C=(N).

Let M be a smooth manifold of dimension n, and M = II(T*(M)) be
the odd-symplectic cotangent bundle introduced in the last section. We can
define J>°(M) and J> (M) as above, whose differential polynomial algebras are
denoted by A = A(M) and A = A(M) respectively. Their local coordinates are
written as

{u**|a=1,...,n, s >0}

and
{u*®, 02 |a=1,...,n, s >0}

respectively. The algebra A can be identified with the subalgebra of A whose
elements don’t depend on any 2. The superalgebra A has another gradation

A=@A, B={f= Y farsre0n |5 € AL

p2>0 S1,..,8p 20

which is called the super gradation of A. We also use the notation A2 = APNA,.
In particular, we have A° = A, A = Ay = C°°(M). This explains the notations
we used in the last section.

2.2 Evolutionary partial differential equations

We can define evolutionary PDEs of the form (2.1) now. Let us prove two
lemmas first.

Lemma 2.2 The following operator

0
81\7 _ Z Za,s«klm

s>0

defines a global vector field on JOC(N), and it also defines a derivation of A(N)

12



Proof:  According to the definition (2.4) of transition functions of the bundle
J>°(N), we have

Zoz ,s4+1 Y so,s+1
Z 0z Z 03 s’
s>0

The lemma is proved. O
When N = M (or M), Oy has the following expression

0 0 0
— a,s+1_ ¥ s+1 _ as+1_ 9
8M Z (’U, Ous + 604 893) or aM Z (U aua,s) ’

s>0 s>0

Note that A = /10, and Oy = BM\AO, so we denote them by d = 0y, = Jy to
abuse of notation.

Lemma 2.3 Let X : A(N) — fl(N) be a continuous derivation such that
[X,0] =0, then we have

X = ZaS(X“)ais, (2.5)

s>0

where X € A(N).

Proof: Without loss of generality, we can assume that X is homogeneous with
respect to the super gradation of A(N), that is X (A?(N)) c AP+IXI(N), where
|X| € Z is called the super degree of X. Then a derivation is a linear map
X : A(N) = A(N) such that

X(f-g9)=X(f) g+ (D)5 Xx(g),

wherefe.fl‘f'( A) g€ A(N).
If f e A(”)( ) for some n € N, then it is easy to see that

ZX as Zaé ZasXa Zas,

s>0

where X = X (2%) € A(N). ) )
If f doesn’t belong to any A" (N),

f=Yfa, where fg€ Ay ADN),

d>0

then we have
X(f) = X (nh_{rolc ;fd)

= nlgr;OX <Z fd> (<= X is continuous)

d=0

= lim Za" Xa

(Z fd> (= dio fa€ A™)

n—oo
s>0
of
= 0 (X")si
= 0z%

13



The last equality holds true because 97 (X )2 7 : A(N) — A(N) is continuous
for all p, and the summation szo P(X ) gza is uniformly convergent, so the

ZO‘ s

summation itself is also continuous. O
If we have an evolutionary PDE (2.1) with X € A, then for any f € A, we
have of
— «, S aS XO(
5= B g = S 0 g

which is just X (f) with X given by (2.5), so we have the following definition.

Definition 2.4 (a) We denote by Der(N) the Lie algebra of continuous deriva-
tions over A(N), and define

&(N) = Der(N)? = {X € Der(N) | [X,d] = 0},

whose elements are called evolutionary vector field on J> (N)
(b) According to Lemma 2.3, an element X € E(N) always takes the follow-
ing form:

X =) 0°(X%) 0

Oz0s '
s>0

We denote it by X = (X%) for short. The differential polynomials X*’s are
called the components ofX. o
(¢c) We denote £ =E(M) and € =E(M).

It is easy to see that £ is a Lie algebra, and Eisa graded Lie algebra.

2.3 Conserved Quantities

To develop a Hamiltonian formalism for the equation (2.1), we still need the
notion of conserved quantity. Roughly speaking, a conserved quantity for (2.1)

is a functional
u] = / flu,u/ o’ u™N))de

such that if u(x,t) is a solution for (2.1), then

/ftdx—/X

This definition is not very convenient, because we need some conditions on u
and f to ensure that the integrations are convergent. A better choice is to
replace R by S = R/Z, and assume that u(x) = (u!(x),...,u"(x)) is actually
the coordinates of a smooth map ¢ : St — M.

Let L(M) = C>(S', M) be the loop space of M. For any ¢ € L(M),
we can lift it to a map ¢* : ' — J¥(M) for all k = 1,2,...,00. Then for
any f € C*°(J*®(M)), we can define a smooth function (¢>)*(f) : ST — R,
x +— f(¢*°(z)), and then define the following functional:

14



Lemma 2.5 Let F be the linear space of functionals of the form Iy, and I :
C>®(J>*(M)) — F be the map f +— If. Then Ker(I) = Im(9), hence we have
an isomorphism " F =2 C®°(J>*(M))/0(C>(J>*(M))).

Proof: By definition,

C%(J%(M)) = lig C=(J*(M)),
k

if f € C°°(J®(M)), then there exists k € N such that f € C°(J*(M)).
If f € Im(9), there exists g € C>°(J¥(M)) such that f = dg, so we have

116] = [ (00)(6™ @)z = g(@™@)]s =0

that is, Im(9) C Ker([).

Conversely, if If[¢] = 0 for any ¢ € L(M), we need to construct g €
C>=(J*(M)) such that f = 9g.

Suppose M is connected (otherwise, we can do the following for each of M’s
connected component), fix a point Py € J*(M), and take Qo = mx,0(FPp) € M.
For any P € J*(M), let Q = 7y, o(P) € M. There exists a path v : [0,1/2] — M
such that

where v* : [0,1/2] — J¥(M) is the lifted map. Then define

1/2
g: J*(M) - R, P~ g(P)= f(¢*(x))da.
0

This definition is independent of the choice of v (because f € Ker(I)), and it is
easy to see that dg = f. The lemma is proved. O

The above lemma shows that, even the loop space is not necessary: we
can define F as the cokernel of 0. Inspired by this fact, we give the following
definition.

Definition 2.6 (a) We define F(N) = A(N)/@A(J(C),Awhose elements are
called local functionals on N. A local functional f + OA(N) is usually denoted
by [ fdz, and the representative f is called a density of this functional.

(b) The space F(N) has an natural E(N)-module structure,

(X,Fz/fdx) — X(F) :/X(f)dx.

A local functional F € F(N) is called a conserved quantity of X € E(N), if
X(F)=0.

(¢c) We denote F = F(M) and F = F(M). Note that d preserves the two
gradations on A, so there are induced standard gradation and super gradation
on F. We denote them by

F-Dr -

d>0 p>0

and Fb = Fy 0 FP. In particular, F = FO.

15



Lemma 2.7 Let X = (X®) € £(N), F = [ fdz € F(N), then we have

XUﬂ:i/(X”;i)dL

OF 5~y O

oz« = 0z
2

where

is the variational derivative of F with respect to z®.

Proof:  In the space F (N ), we still have integration by parts, so

x(r) = [ [ Sorwe A

s>0

- [T

s>0

The lemma is proved. O

2.4 Hamiltonian structures

We are ready to define Hamiltonian structures for the evolutionary PDE (2.1).
Similar to the finite-dimensional case, a Hamiltonian structure on M is a Lie
bracket over the space of local functionals (i.e. F) whose action is given by
certain differential operations in a local chart.

Definition 2.8 (a) Let V* = Hom(A*F, F), whose elements are called general-
ized variational polyvector. According to Theorem 1.1, there is a unique bracket
operation [,] : VP x V4 — VP+a=1 satisfying the condition (1.8)-(1.10) with Ay
replaced by F and the condition (1.11). We still call it the Nijenhuis-Richardson
bracket.

(b) A generalized variational p-vector P € VP is called a variational p-vector,
if its action on Fy,..., F, € F 1is given by

SF OF,
P(Fl,...,Fp):/ Y Pt (Mall)“'as”(auai) dz,

81,..4,8p>0

(2.6)
where Rfil,_’_‘_‘;;ip € A. The space of variational p-vectors is denoted by AP. We
denote by A* = @pzo AP which is a subspace of V*.

(c) A wariational bivector P € A? is called a Hamiltonian structure, if
[P, P] = 0.

We have an infinite-dimensional analogue of Proposition 1.3.
Proposition 2.9 If P € AP, Q € A%, then [P,Q] € APT1~L,

The definition (2.6) of variational polyvectors is very complicated. It is not
easy to determine whether a generalized variational polyvector P € V* belongs
to A*, so we cannot prove the above proposition directly. In what follows, we
will give another description of A*, then prove the proposition by using the
odd-symplectic bracket on F.

16



Lemma 2.10 Define a map 7 : FP — AP,

P= /sz —=(P)(Fy,. .., F,)

B orp o [ OF o [ OF,
_/ Z 892’;-~~892118 (éum) g (&u%) dz.

S1yeees 5p>0

Then y(P) is independent of the choice of the density P, and 7 s surjective with
Ker(y) = Rw C F!', where w = [(u*'6,)dz. So we have the isomorphisms
AP = FP (p#1), and A' = F'/Ruw.

We have to omit the proof of this lemma because of its length. In [29], we
proved a generalization of this lemma in §2.3. One can easily reduce that proof
to the present case.

Define the action of P € FP on Fy, .. ., Fp, € Fby

P(Fy,....F,)) = )(P)(Fy, ..., F,).

Then we have the following lemma.

Lemma 2.11 For P € FP, Q € F4, define

P 6 0P ¢
mm/(wéﬁ+<mwwf)m

then the operation [,] satisfies the condition (1.8)-(1.10) with Ay replaced by F

and the condition (1.11), hence (F,[,]) forms a graded Lie algebra. In particu-
lar, its center is given by Rw.

Proof: Suppose P = [ Pdx € FP, F € F, then

§P 6F OP . [ OF
W”—/@%Mﬂm—/smw3<mﬁ d,

so we have

[P, F|(Fa,...,Fp)

_/ > o” 815851<5F)
00a, - 0035, \ = 00a, u

52,...,8p>0

So 5F2 Sp 5Fp
8 (51[,0‘2 ) 8 <5uap )) dl‘
_ 87’]5 51 5F1 s 6Fp
_/ . zs: . 3931; - 30211 0 <5ua1> 0 <5u0‘1“> dx

=P(F,F,...,F).

The identity (1.8) is proved.

17



Suppose P € Fr, Qe .7:"1, then we have
B 0P 0Q » 0P 6Q
[P _/ (5% sue T Y 6%) de

1. 8Q §P ., 5Q 6P
_1\(p—1)g % “° _1\ptp(g—1) % 7
/(( D e s, T 50., 6u0‘>dx

B 50 6P 50 6P
=(=D"Q, Pl.

The identity (1.9) is proved.
The identity (1.10) is a special case of (1.11), so we only need to prove the
latter one. For any P € FP, we define an operator Dp : A — A

— S 57P a  \pas 5i a

s>0

then it is easy to see that Dp(A?) ¢ APte=' [Dp,d] = 0, and [P,Q] =
J Dp(Q)dzx for any Q € F?. The identity (1.11) is equivalent to the follow-
ing identity:

(=1 Dipg) = Dp o Do — (~1)* V@D Dg 0 Dp, (2.8)

which is a corollary of the following identity:

soalPQl = (32) 4 (170 (51, (29)
(—1)17—1%[13, Q] = Dp (ggi) — (~1)P~D=bp, (;S;Z) . (2.10)

To prove the identity (2.9), (2.10), we introduce the following operators

B e[t S 0
5%872( 1)< s >8 Qus’

t>0

o« ettt , 0
S M (g

t>0

which are called the higher Euler operators. In particular,

5 . 6
604,0—%7 O_Ea

and they satisfy the following identities:

Saolf ) = S (=1) (Ban(N)D(9) + 0 (/)dar(9)) .

t>0
0 0

Sat08.0 = (=1)' 5 5700.0,  dasdy = (1) g o0

18



Then we have

504,0[Pa Q]
=300 (37 (P)35.0(Q) + (~1)"35.0(P)3; Q)
=3 (1" (308 (P (55.0(Q)) + 9"(5] (P))dr(35.0(Q)) )

t>0

(=1 D1 (8aa(F5.0(PNI (G (Q)) + 0" (05.0(P))3aa (65 (@)

>0
_Z< 80t at(% o(Q))+at(5§(p))f‘9(<;a&7()ﬁ(7;C2>)

>0

+(=1)? (Wﬁt@ﬁ(@)) +6t(5570(P))8(52’325Q))>>

=Dp(0a,0(Q)) + (=1)""Dq(0a,0(P))-

The identity (2.9) is proved. The identity (2.10) can be proved similarly.
Suppose Q = [ Qdzx € F, we have

ow 5@ ow 0Q
. Q) = / (59 Jus  ou 06, )dx
_ a1 0Q 6Q
_/(u 15ua+92‘59 )dx

~ 8@
a,s+1 s+1 7%
/Z( uas+9a 693>dz

s>0

so w is in the center of the graded Lie algebra (F,[,D-
Suppose P € F? is in the center of (F,[,]), then for any F € F = FO we
have [P, F] = 0. Consider the action of [P, F] on Fy,...,F, € F,

[P, F|(Fs,...,F,) =3(P)(F,F,...,F,) =0,

so P € Ker(y) = Rw. The lemma is proved. (]
For more properties of the higher Euler operators and their generalizations,
please refer to [24, 29] and the references therein.

Proof of Proposition 2.9: Suppose P € AP, Q € A4, take P’ € FP, Q' € F4
such that

P =), Q=Q),
then define [P, Q] = j([P’,Q']). According to the above two lemmas, this
definition is independent of the choice of P’ and Q. Lemma 2.11 shows that

the operation [,]’ must coincides with the Nijenhuis-Richardson bracket [,], so
we have [P, Q] € AP*9=1. The proposition is proved. O
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Lemma 2.10 shows that P and A? can be identified, except the p =1 case.
When p = 1, Lemma 2.7 shows that A' = £/Rw, so we can identify £ and F*
as follow

X=X%et & X:/(X"‘Ga)dxeﬁl.

It is easy to see that the action of X € £ = F' on F € F = FV is exactly given

by [X, F]. From now on, we will always working with F, and forget about F,
E,V, and A*.

Definition 2.12 An element X € FLis called an evolutionary PDE. An ele-
ment F' € FO is called a conserved quantity of X if [X,F] = 0. An element
P € F? is called a Hamiltonian structure if [P, P] = 0. An evolutionary PDE

X is called Hamiltonian if there is a Hamiltonian structure P and a conserved
quantity F such that X = [P, F.

3 Hamiltonian structures

3.1 Presentations and examples

Let P = [ Pdx € F? be a variational bivector, then P satisfies the following

homogeneous condition .
-1 OP
pP=- E 0:
2 003’

s>0
so we have
1 P 1 6P
sz/ > 0 dx:/<9a>dx.
2 = 003 2 00,
Suppose
6P (0% S (o3 S
5o => P05 = (> PPo" | 05, (3.1)
s>0 s>0
then
P= % / O | Y P2P0% | 05 | da, (3.2)
s>0

so a variational bivector corresponds to a matrix differential operator

P=(P)=|>_Pro|. (3.3)

s>0

By computing the variational derivative of both side of (3.2) with respect to 6,
one can show that
P+Ph =0, (3.4)

where

PH=((P)™) = | 2 (-0 P

s>0
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It is easy to see that the variational bivectors are one-to-one corresponding to
the matrix differential operators (3.3) satisfying the condition (3.4), so we have
the following definition.

Definition 3.1 Let P € F2 be a Hamiltonian structure, the matriz differential
operator P defined by (3.1) is called the Hamiltonian operator of P.

In literatures, a Hamiltonian structure is often given by its Hamiltonian opera-
tor.

Let P € 72 be a Hamiltonian structure, then the bracket operation
{,}p I.FX.F'—>J:,(F,G) — {F7G}p :P(F,G)

is a Lie bracket, whose action can be computed explicitly:

{F,G}p = P(F,G) =[P, F],G] = / (MPO‘B <§53)> da.

ou®

If we enlarge the space F to contain functionals of the following form
w) = [ @)=y
then we have
(W) @) = [ 8= 9)P (u(e)ile - 2)da
=> PP (u(y))6 (y — 2).

s>0

This is another common way to present a Hamiltonian structure. We can call
it the coordinate presentation.

Example 3.2 Suppose M =R, son =1. We can omit the o indez.
Let P =% [ g(u)00*dx € F?2, then we have

o e,
O 2 o) + 2 (g(u)0)) = g(w)0" + o/ ()0,
so we have SP &P
(PP =2 [ o5odr =0,

so P is a Hamiltonian structure. The Hamiltonian operator reads
1 / 1
P = g(u)d+ ' (W,

and the coordinate presentation reads

{u(y), u(2)} = g(u(y))d' (y — 2) + %g’(U(y))uw(y - 2).
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Consider a deformation of P:
P:P+c/003dx,

then 5P P
_ o 7 — / 13
[P,P] =2 30 50 dz QC/g (u)00"0°dx.

It is easy to see that [P, P] = 0 if and only if ¢" (u) = 0. So we obtain a family
of Hamiltonian operators with three parameters a,b, c:

Pape=(au+b)0+ gul +cd3.
In particular, the operators
P1="Po1,0 =0,
11, hos
Po = Pl,O,h/S =ud + §u + ga

give the two Hamiltonian structures of the Korteweg-de Vries equation:

Ut = UUyp + —=Ugpgz-

12
And the operators

PL=Po1_1=0—03,

1
P2 =P1r0,0 = ud + §u1

give the two Hamiltonian structures of the Camassa-Holm equation:
Up — Uppt = 3UUy — 2Ug Ugy — UUppy-

Example 3.3 Let M = R?, we denote

Define a series of shift operators
Sk=¢ek9  Lez,

and denote by a* = SF'(a), al® = S¥(a) for a € A, k € Z. The Toda equation
(2.2) and (2.3) can be written as

+ _
u =" —e', v=u—u .

Here we take € = 1 for convenience.
The second Hamiltonian structure of the Toda equation can be written as

P, = / (e”+00+ +ub(op" — @) + ¢¢>+> dz.
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Its variational derivatives read

5Py
0P, o

W =c’0 0,

P.

ki =gt — e +u(¢" — ¢),
00

6P2 _ - A + —

7 =ufd —u" 0" +¢ 9.

Here we used the identity:

OF oy Of
5 =S o
kEZ

where F = [ fdz € F,z=u,v,0,¢.
Then, by using the following fact

/adxz/a[k}dx, for allae/l, ke,

we obtain

= [ (70t = e +ulo” —0)) (6"~ 0)
(u —u 0 4ot — ¢7) 6”979) dx
/ (e”+9+9¢+ 006 + "0~ 06 — 6”9_9¢_) dz
/(6”09 o—e"00" " +e"0 0 —e”0 00~ )
=0,

so Py is indeed a Hamiltonian structure.
The first Hamiltonian structure of the Toda equation can be written as

P = / (66" — ¢)) da.

One can show its hamiltonianily by using a similar method.
The two Hamiltonian operators read

0 S—1
7)1:<1—$—1 0 >

D, — Se? —e’S71 u(S—1)
T\ 1=y S-st )

The coordinate presentations can be also written down by acting the above op-
erators on O-functions.
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3.2 Miura transformations

Consider the follow equations:

KdV: wu; — 6uuy + tUgee = 0,
mKdV : v — 6020, + Vgwe = 0.

Miura found that if v is a solution to the mKdV equation, then u = v? + v,
gives a solution of the KdV equation.
In general, for an evolutionary PDE

ug = X, where X € A,

we can transform it to another equation by using transformations of the follow-
ing form:
u® = a® = F%u)+Y°®

where F*(u) is a local diffeomorphism, and Y* € A- . We also call them Miura
transformations.

Miura transformations are important for Gromov-Witten theory. For exam-
ple, when considering the target space P!, the corresponding integrable system
is the extended Toda hierarchy, whose equations (like (2.2) and (2.3)) contain
e = vh. On the other hand, the free energy and two-point functions of this
model should be formal Laurent series of i, so we need to perform certain
Miura transformations to eliminate the terms containing odd powers of €.

It is easy to see that any Miura transformation can be written as the com-
position of a local diffeomorphism and a Miura transformation of the following
form:

u® = at =u*+ Y.
Local diffeomorphisms are just coordinates transformation on the manifold M,
which is easy to deal with. For Miura transformations of the above form, we
have the following lemmas.

Lemma 3.4 For anyY* € Aso (e =1,...,n), there exists a variational vector
Z € FL, such that

W% = u* + Y =Pz (u®),

where Dy is the derivation defined by (2.7). Z is called the generator of this
Miura transformation.

Proof:  Let v = min{v(Y*) | « = 1,...,n} > 0. Write Y® as sum of its
homogeneous components

Ye=Y>+ ﬁ,’_le... .
Take Z(1) = [ (Y20,) da € F}, then we have

e P70 (u* + Y
—u Y Y

— (Yua+DZ(1)( ya+1)+...)+...
=u® +Y*,
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where v(Y*) > v + 1.

For Y%, we can take a Z(y) € .7}1}“, such that
e P2e) (u® 4+ Vo) = u + Y,

where 1/(}:/0‘) >v+2. R
So we obtain a series of variational vector Z(y, Z(2), - € F! such that

1) I/(Z(l)) < V(Z(Q)) < .. .
ii) Yo = eDZ(l)eDZ<2) (ua).

Then, by using the Baker-Campbell-Hausdorff formula and the commuting rela-
tion (2.8), one can show that there exist Z € F2 such that u® +Y = eP7 (4%).
The lemma is proved. u

Lemma 3.5 Let u® — a® = u®+Y* be a Miura transformation with generator
Z € F', then this Miura transformation transforms P € FP to e*12(P). We
name Miura transformations of this form gauge transformations.

This lemma depends on a transformation formula of variational derivatives,
whose proof cannot be given here, so we omit it. One can find a full proof in
§2.5 of [29].

In Poisson geometry, Darboux theorem plays an important role, which classi-
fies the equivalence classes of Poisson structures modulo local coordinates trans-
formations. We have a similar problem for the infinite dimensional case. Let H
be the set of Hamiltonian structures

H={PeF*|[PP]=0},
and G be the group of gauge transformations
G={c"7|Z e Fly},

then G acts on H, and the corresponding Darboux theorem is a certain descrip-
tion of the quotient space H/G.

A classification problem is often converted to a deformation problem. For a
Hamiltonian structure P € H, let v = v(P), and write P as

P=Py+Q, whereP)¢€ ]}3, v(Q) > v,

then Py must be a Hamiltonian structure. We call it the leading term of P.
Then the equation [P, P] = 0 can be written as

1
an,(Q) +5Q.Q1 =0, (35)
where dp, = adp,. The equation (3.5) is called the Maurer-Cartan equation for
Py, and a solution to it is called a Maurer-Cartan element for P,.

Let MC(P) be the set of Maurer-Cartan elements for a homogeneous Hamil-
tonian structure P € F2:

ME(P) = {Q € 2, | dp(Q) + 5[@.Q) = 0},

25



then G also acts on MC(P):
(€97,Q) = Q = e#(P + Q) — P.

The deformation problem is just to ask the structure of the quotient space
MC(P)/G.

The following definition and lemma are very standard in deformation theory,
so we omit their proof.

Definition 3.6 Let P € ]:'3 be a homogeneous Hamiltonian structure.

(a) Q € ]:';, is called a infinitesimal deformation of P if dp(Q) = 0.

(b) Two infinitesimal deformation Q1, Q2 are called equivalent if there exists
Z e ]:';O such that Q1 — Q2 = dp(Z).

(¢) An infinitesimal deformation Q is called trivial if it is equivalent to 0.

(d) The triple (F,[,],dp) forms a differential graded Lie algebra (DGLA).
Its cohomology is defined as

H(F,dp) = Ker(dp)/Im(dp).

Note that P is homogeneous, so we have the following decomposition
H(F,dp) = DD Hi(F. P),
p=0d>0

where ) R
Ker(dp : F§ — .7:5:;)

Im(dp : ﬁg:i — .7:"5) .

Hg(]},dp) =

Lemma 3.7 Let P € .7:'3 be a homogeneous Hamiltonian structure.

(a) The space of equivalence classes of infinitesimal deformations of P is
given by Hiy(]:", dp). In particular, every deformation of P is trivial if and
only if H2,,(F,dp) vanishes.

(b) Let v be the lowest degree of classes in H2,(F,dp). If H3,,, (F,dp)
vanishes, then every infinitesimal deformation can be extended to a genuine

deformation, and the space of equivalence classes of deformations of P is just
Hiu(]:7 dP)

Example 3.8 Let P =% [ (P*?(u)0,05) dz € F2 be a Hamiltonian structure.
Then it is easy to see that (PP (u) 52+ A 52=) gives a Poisson structure on the
manifold M. We assume that det(P®?) # 0, then, according to the Darboux
theorem in finite dimensional symplectic geometry, there exists a local coordinate
system (ul,...,u™) such that (P*?) is a constant matriz. Let 0% = P*P0g, then

5P 5P
s =0 0

The operator Dp (see (2.7)) reads

Dp = Zasea 4

Ous !
s>0

If we write 9°0% as du™*, then Dp is just the de Rham differential of J>°(M).
In particular, D% =0, so we have a complex (A, Dp).
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By definition, the following sequence of complex morphisms is exact

0 (A/R, Dp) & (4, Dp) L (F.dp) >0,
so we have a long exact sequence of cohomologies

= H? (A/R,Dp) — HY(A,Dp) — HY(F,dp)
— HPY(A/R,Dp) — HETY (A, Dp) — HY TN (F dp) — -+ - .

Define a map
F (0,1 x J=(M),  (f (u™®,05)) = (£°u™*,°05),

which induces a homotopy equivalence from the complex (fl, Dp) to the de Rham
complex (*(M),dqr) of M, so we have

~ P —0-
(A Dp) = { glan0 4=

0, d> 0.
Similarly,
) H),(M)/R, p=0, d=0;
HY(A/R,Dp) = < Hip(M), p>0, d=0;
0, d> 0.
So we have
R HY. (M), d=0;
HY(F.dp) = 4 HIZH(M), d=1;
0, d> 2.

In particular, if H3z(M) =0, every deformation of P is trivial.

If H35(M) 2 0, there are non-trivial infinitesimal deformations, which can
be always extended to a genuine deformation since Hig(f", dp) = 0. For exam-
ple, if G is a simple compact Lie group, and M = T*G, then M has the canon-
ical symplectic structure, and Hap(M) = H3p(G) 20, so there is a non-trivial
infinitesimal deformation with degree one. The Drinfeld-Sokolov Hamiltonian
structure can be regarded as a reduction of this deformation.

3.3 Hydrodynamic Hamiltonian structures

In this subsection, we consider homogeneous Hamiltonian structures with degree
one.

Lemma 3.9 ([9]) Let P € F? be a variational bivector, the corresponding ma-
triz differential operator reads

PF = g*B(u)d + Fi‘ﬁ(u)uw’l.

Suppose det(g™?) # 0, then P is a Hamiltonian structure if and only if the
following two conditions hold true:

i) 9= (gap) = (9°%)71 is a flat (not necessary positive definite) metric on
M.
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i) I')g = —gaol'y) give the Christoffel symbols of the Levi-Civita connection
of g.

Proof:  The bivector P € F2 reads

1
_ af 1 af, v,1
P=3 / (9°70,0% + T2Pu110,05) da.

The skew-symmetry condition P + Pt = 0 gives

gaﬁ = gﬁav (3~6)
9gaﬁ

af Ba __
g i = S

The variational derivatives of P read

5P 1,00%%  gros

— =T0%0,05 + - (2 — 2 )u"10,0
Su’ v Chs 2( ou° ouY Ju b
P .

sa, =970+ T

Let W = $[P, P], then we have

W = / (A*P710,0501 + BEPTuT10,050% + COPY w7 u10,050.,) dz

g102

where
AaBy :g'yapgﬁ’
1 ores  arg?
Baﬂ'y —__ 0 o ) Fﬁar"/ﬁ
4 29 <8u5 8u">+"5’
af ap
CaBy :lpwé orgs _ory .
o192 972\ Jud ou’1
If W =0 then % =0 foralla=1,...,n, so we have
o W 0 (oW oW PW
= w206, 003 \ a0, o6 ) T a01o0]
oo 0 W _ 9 (fow oW\ oW
ouP2 0,  oub? \ 0h, a0y | 90LouPt’

where T is the density given above. The above two identities imply that
AeBY — Aa’yﬁ’

Bgﬁ'v - B(fja’v.

The equation (3.6) shows that g can be regarded as a metric. The equation
(3.7) shows that the metric g is invariant with respect to the connection defined
by I') 5- The equation (3.8) shows that this connection is torsion-free, so it must
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be the Levi-Civita connection of g. The last equation (3.9) is equivalent to the
flatness of this connection.

Conversely, if g and T" satisfy the condition i) and ii), we can choose a system
of flat coordinates such that g is a constant metric and I' vanish, then it is easy
to show that P is a Hamiltonian structure. The lemma is proved. O

Definition 3.10 A Hamiltonian structure P € ﬁf s called of hydrodynamic
type if it satisfies the conditions in Lemma 3.9.

According to Lemma 3.9, we can always choose a coordinate system such
that

1 o
P= 5/(n 70,0%) dz, (3.10)

where (7%#) is a constant symmetric non-degenerate matrix.

From now on, we assume that M is connected and contractible, then consider
the deformation problem of (3.10). The computation is similar to the degree
zero case. The variational derivatives read

5P &P

= [t aﬁal
suc O se, Vs

We denote 0% = naﬂH‘E, then the operator Dp reads

DP _ Z 0a,s+1 0

oues’
s>0

The algebra A can be decomposed as A=A o A" , where
A" =A® N (Spang {0°° |a=1,...,n; s >1}),
A" = (Spang {6"°,...,0™°}).
Note that Dp(A”) = 0, so we have (A, Dp) = (A, Dp) @ A”, and
H*(A,Dp) = H*(A',Dp) @ A".

On the other hand, if we replace #%°*1 by du®*, then (/i’, Dp) is again the de
Rham complex of J>°(M), so we have

DA _ Ra (pv d) = (0,0),
Hd(““’DP>—{ 0, (p.d)# (0,0),
which imply . .
1 AP (R™ 3 - Ov
Hg(A,DP):{ 07( ) d>0

Then it is easy to see

Ap(Rn)v p>0,d=0;
0, otherwise.

HE(A/R, Dp) = {

Finally, by using the long exact sequence
= H? (A/R,Dp) — HY(A,Dp) — HY(F,dp)
— Hy" (A/R, Dp) — Hi{ (A, Dp) — HY L} (F.dp) = ---
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we obtain
AP(R™) & APTLH(R™), d = 0;

D( T _
Hd(f’dp)_{ 0, d>0.

In particular, H io(]:" ,dp) =20, so there is no non-trivial deformation of P. This
gives the Darboux theorem for Hamiltonian structures of hydrodynamic type.

Theorem 3.11 Let P € }?12 be a Hamiltonian structure of hydrodynamic type,
then for any deformation P = P + Q, there exists a gauge transformation erdz
such that €2z (P) = P.

It is interesting to ask whether there are Darboux theorems for Hamiltonian
structures with degrees > 2. For example, a degree two Hamiltonian operator
has the following general form

’Paﬁ — ga582 + F$5u7’16+ (P;xﬁu'm + Q?fug’lug’l) )

We can assume that g = (gaﬁ) is non-degenerate, then g~! is a symplectic

structure on M. One can show that Fgﬁ is given by a symplectic connection
of g71, and it should satisfy a certain flatness condition. But we know nothing
about P and Q.

In [5], De Sole and Kac computed certain cohomology groups similar to
H*(F,dp) for PP = 89N with ¢*? being constant and det(g*?) # 0. Their
definition is slightly different from ours, but the result is quite comparable (see
[6] for details).

4 Bihamiltonian structures

4.1 Definition and semisimplicity

A bihamiltonian structure (Py, P») is a pair of Hamiltonian structures such that
[Py, P2] = 0.

Lemma 4.1 Let P € F2 be a Hamiltonian structure, if there is an X € F such

that [ X, [ X, P]] = 0, then (P, [P, X]) is a bihamiltonian structure. Bihamiltonian
structures obtained by this way are called exact bihamiltonian structures.

Proof:  Let @ = [P, X], then [P,P] =0, [P,Q] =0, and
@, Q] =[P, X],Q] = —[[X,Q], P] - [[Q, P], X] = 0.
The lemma is proved. O

Example 4.2 The KdV equation has two Hamiltonian structures

P = /Qﬁldx, Py, = / <u991 + 2903) dx.

Let X = [6dz, then Py = [P, X], and [P, X] = 0, so (P, P,) is indeed a
bthamiltonian structure, and it is exact.
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Example 4.3 The Toda equation has two Hamiltonian structures
Pi = [ 00 - d)a.
P :/ (e”+99+ +ub(¢t — @) + ¢¢+) dz.

Let X = [6dz, then Py = [P2,X], and [P1,X] = 0, so (P1,P,) is also a
bthamiltonian structure, and it is exact.

Example 4.4 The Camassa-Holm equation has two Hamiltonian structures:

P = /9(91 —0%)dz, Py= / (ubd") dz.

We have shown in the last section that any linear combination of Py and P
is a Hamiltonian structure, which implies that [Py, Py] = 0, so (P, P) is a
bihamiltonian structure. Note that this bihamiltonian structure is not exact.

Let (P;, P2) be a bihamiltonian structure, if both P; and P are of hydro-
dynamic type, then (Py, P,) is also called of hydrodynamic type. According to
Lemma 3.9, there exists a pair of flat metric g; and g5, such that

1 (0% (03
o= / (927 ()08} + 2507 0,65) da,

where a = 1,2, and ¢2# and Fi’y‘ﬁa are given by the contravariant metric and the
connection coefficients of g,. In general, one cannot find a coordinate system
such that both g; and go are constant.

Definition 4.5 Let (P1, Py) be a bihamiltonian structure of hydrodynamic type,
whose contravariant metric are ¢®° (u) and g3° (u). If the roots

M), ... A" (w)

of the characteristic equation
det (957 () = At (w)) = 0

are not constant and distinct, the bihamiltonian structure (Py, Pa) is called
semisimple. The roots A1, ..., \" are called the canonical coordinates of (Py, P).

Theorem 4.6 ([20]) Let (Py, Py) be a semisimple bihamiltonian structure. Its
canonical coordinates can serve as local coordinates near any point on M. Fur-
thermore, the two metric has the following form in the canonical coordinates

gi =0V f1(N), g =8N FI(N).

Note that we don’t sum over repeated Latin indexes i, j.
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In canonical coordinates, the two Hamiltonian structures have the following
forms:

1 - L=
Plzﬁ/ S A0+ S AT0,0; | da,

i=1 ij=1

n

1 i 1 & ij
P, :5/ ;g (A)6,6! +ijZZIBJ0i9j dz,

where g*(\) = Xif()\), and

2 fij ON fi ON
g L (g 0f ;1 ¢ Of 4
ij _= (9 i1 _ 9 i,
B Q(fj (9)\i>\ fi(r“))\])\ ’

Note that f? # 0, g' # 0, and AY, BY are skew-symmetric.

Example 4.7 ([7]) Let M be a Frobenius manifold, then we have a pair of
compatible metric
g7 =" g’ =B,

which define a bihamiltonian structure (Py, Py) of hydrodynamic type. If M is
semisimple, then (Py, Py) is also semisimple, and the canonical coordinates of
(P1, Py) coincide with the ones of M. Bihamiltonian structures of Frobenius
manifolds are always exact, because Py = [Py, €], where e is the unit vector field.

4.2 Bihamiltonian cohomology

In this subsection, we consider the deformation problem of a semisimple bi-
hamiltonian structure.

Let (Py, P») be a semisimple bihamiltonian structure, denote by d, = adp,
(a =1,2), then they satisfy

d? =0, dids+dody =0, d% =0,

so we have a double complexes (]:'2, dy,ds).
A deformation of (Py, P») is a bihamiltonian structure of the following form

(P1,Py) = (P, + Q1, P2 + Q2),

where @), € ]-21 (a =1,2). According to the results given in Section 3.3, there
is a gauge transformation €242 such that e®d# (131) = P, so we can take Q1 =0,
and rename Q5 to Q. Then (P;, P,) = (Py, P, + Q) is a bihamiltonian structure
if and only if

HQ) =0, b(Q)+ Q.0 =0

A bivector @ satisfying the above conditions is called a Maurer-Cartan element
for (Py, P2), and we denote the set of Maurer-Cartan elements by MC(Py, Ps):

MC(Py, Ps) = {Q € 2, | 41(Q) = 0, dx(Q) + 5[@. Q) = 0}.
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Two deformations are equivalent if there exists a gauge transformation that
convert one to another. Note that our P; is fixed, so the gauge transformations
should preserve P, we denote such gauge transformations as G(Py) :

G(P) ={e™z |z e FLy, di(Z) =0}

The deformation problem for the bihamiltonian structure (Py, P») is just to ask
the structure of the quotient space MC(Py, P2)/G(Py).

Definition 4.8 (a) Q € ]:"il is called a infinitesimal deformation of (Py, Pa) if
h(Q) =0, d>(Q) = 0.

(b) Two infinitesimal deformations Q1, Q2 are called equivalent if there exists
Z € FLy such that di(Z) =0, da(Z) = Q1 — Q.

(c) An infinitesimal deformation Q is called trivial if it is equivalent to 0.

(d) The bihamiltonian cohomologies of (Py, P2) are defined as

FP N Ker(dy) NKer(ds)
ﬁg N Im(dldg)

BHg(]:-7d1ad2) =

The following lemma is quite standard, so we omit its proof.

Lemma 4.9 Let (P, P2) be a semisimple bihamiltonian structure.

(a) The cohomology group BHil(f", dq,ds) gives the space of equivalence
classes of infinitesimal deformations of (Py, Ps).

(b) Let V' be the lowest degree of classes in BH2 | (F,dy,ds). If

BHS,,,(F,di,d2) =0,

then every infinitesimal deformation of (Py, P2) can be extended to a genuine
deformation, and BH2|(F,d1,ds) actually gives the space of equivalence classes
of deformations.

In [28] and [10], we proved the following theorem.

Theorem 4.10 Let (Py, P3) be a semisimple bihamiltonian structure, then

n

. @ C®(R), d=3;
BHc2lz2(]:7 dl;d2) = i=1 ( )
0, d=2,4,5,....

The classes in BH3 (]:' ) are actually parameterized by n functions of canonical
coordinates {c1(A1),...,cn(An)}. We will discuss their definition and properties
in the next section.

In [30], we prove the following theorem.

Theorem 4.11 Let (P, = [(0¢')dz, P> = [ (uf9’)dx) be the leading term of
the bihamiltonian structure of KdV equation, then

BHj 4 (F,dy,d) = 0.

The proofs of these two theorems are very long, so they cannot be given here.
Combining the above theorems and lemma, we obtain the following corollaries.
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Corollary 4.12 Let (Py, P2) be a semisimple bihamiltonian structure. For any
deformation (P1, Py) of (P1, P2), one can define n functions

Cl()‘l)7 .. .,Cn()\n),

which are called the central invariants of (151,162), such that

(a) Two deformations are equivalent if and only if their central invariants
coincide.

(b) Write the deformation (]51, ]52) as the sum of homogeneous components

Pa =P, +ZEkP(£k], a=1,2,

k>1

where Pik] € .7:",3+1, then there exists a gauge transformation e*3% such that

(€217 (Py), €292 (Py)) doesn’t contain odd powers of «.

(c) If (Py, Ps) is the leading term of the bihamiltonian structure of the KdV
hierarchy, then for any smooth function c(u) there exists a deformation whose
central invariant is given by c(u).

Part (a) is called the uniqueness theorem of the deformation problem. Part (b) is
important for Gromov-Witten theory, because it ensure that the corresponding
integrable hierarchy can be always written as a formal power series of i. Part
(c) is called the existence theorem of the deformation problem. We conjecture
that it is true for arbitrary semisimple bihamiltonian structure.

Recently [2] (c.f. [1]), Carlet, Posthuma, and Shadrin proved the following
theorem, which showed that our conjecture is true.

Theorem 4.13 ([2]) Let (P, Py) be a semisimple bihamiltonian structure of
hydrodynamic type, then BHS(]:'7 d1,ds) vanishes for most (p,d). In particu-
lar, BH§’>5(]:', dy,ds) = 0, which implies that the existence of a full dispersive
deformation of (Py, Py) starting from any its infinitesimal deformation.

The proof of this theorem is sophisticated, so we cannot give it here. Please
refer to [2] for details.

4.3 Bihamiltonian vector fields

Let (Pi, P) be a bihamiltonian structure, X € F* is called a bihamiltonian
vector field, if there exists I,.J € F° such that X = dy(I) = do(J). Sup-
pose (Py, Py) is semisimple, and (P;, P,) is a deformation of (Py, P;). In this
subsection, we will consider their bihamiltonian vector fields.

Lemma 4.14 The space of bihamiltonian vector fields of (Py, Py) is given by
BHL,|(F,dy,dy).

Proof:  Let X be a bihamiltonian vector field of (P;, P»). Note that deg(P,) =
1(a=1,2),s0 v(X)>1. R
The bihamiltonian cohomology BHY, (F,d1,dp) is defined as

BHL|(F,di,d2) = {X € F%, | di(X) =0, d2(X) = 0},

so every bihamiltonian vector field belongs to BHél(]:', dq,ds).
On the other hand, if X € BHél(]:", dy,ds), then there must exist I, J € FO
such that X = dy(I) = da(J), because Hél(ﬁ, d,) =20 (a=1,2). O
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Lemma 4.15 We have BHéQ(]:', dy,ds) =0.

Proof:  Suppose X = dy(I) = da(J) € F} (d > 2), where

I:/pda:, J:/qu,

and p,q € AN 1 < N < d. We are to show that one can always choose
another pair of density p’,¢’ € AN~Y such that I = [p'dz, J = [ ¢'dz. Then
the theorem can be proved by induction on V.

Let Z = di(I) — d2(J) = [ (Z%0,) dz. Tt is easy to see that Z® € AN+,
We introduce a notation a(; s = ai—‘},s for a € A. Then one can obtain that

Zianery = DN (0w Govy = Aainygon) = 0,

Denote by 7" = q(i,n)i,n), then qq,ny.n) = 097, P, vy, = 0V AT
Next, compute ZZ]. INE

0=Z{ony = (DN <<N+ 2) firtAntsY + (XNAY — BY)+
P (pa.nyGN—1) = PGNaN-1) = 9" (46,8 GN-1) = 46N EN-1))) -

Take i = j, we obtain 7’ = 0, so p and ¢ are linear in A*V. For i # j, we obtain
P@i,N)(j,N=1) = P(,N)(i,N=1)>  4(,N)(5,N=1) = 4(5,N)(i,N=1)>

which imply that one can choose p,§ € AN~V such that p’ = p — d(p) and
q' = q — 9(q§) belong to AN~1. The lemma is proved. O

The above proof can be regarded as a demo version of the proofs for Theorem
4.10 and 4.11. In the latter cases, we also use an induction on N for AN). This
computation method can be translated to the language of spectral sequence.
In Carlet, Posthuma, and Shadrin’s new preprints [1, 2], they introduce more
spectral sequences, which help them to compute almost all the bihamiltonian
cohomologies BH?(F, dy, dy).

The above lemma shows that bihamiltonian vector fields of (P;, P») must
have degree one.

Corollary 4.16 Let

X :/(Xo‘t?a)dm
be a bihamiltonian vector fields of (Py, Py), then X must be diagonal hydrody-
namic, i.e. X' = Vi(A)AbL,
Proof: ~ Suppose X = di(I) = do(J), where I = [pdx, J = [ qdz, p,q € Ao,
then X* takes the following form:

X’L. = Z ‘/jl(A)AJ’l,

j=1
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where the coefficients read
V) =—f"Dij(p) = —9'Di;(q),
and D;; is the following linear differential operator

02 19logf* &  1dlogfl 9

Pu=gxani Yo an an T3 an oav

Note that D;; is symmetric, so we have (A* — M)D;;(¢q) = 0, which implies
Vji =0 if 4 # j. The corollary is proved. (]

Corollary 4.17 If X1, Xs are bihamiltonian vector fields of (P, P2), then
[Xl, Xg] =0.

Proof: Let Y = [Xy, X3], then di(Y) = 0, d2(Y) = 0, so Y = 0, since
Y € BH}(F,dy,ds) 0. O

Now let us consider the bihamiltonian vector fields of (P;, Py). Let X € F'
be such a vector field, then v(X) > 1. We expand it with respect the standard
gradation A

X=X +Xo+..., Xy€F}

then it is easy to see that X; must be a bihamiltonian vector field of (Py, P2).
We call X; the leading term of X.

Theorem 4.18 (a) If X1, X5 are bihamiltonian vector fields of (P1, Py), then
[X1, X2]) = 0. If they have the same leading term, then X, = X,.

(b) For any bihamiltonian vector field X1 of (Py, Py), there exists a bihamil-
tonian vector field X of (151, pg) such that X ’s leading term is just X;.

Proof: For Part (a), we only need to show that if the leading term of a
bihamiltonian vector field X of (P;, P») vanishes, then X = 0. Expand X as

X=X +Xo+Xs+---, X, =0, Xge FL
We also expand (P, Py) in the same way:

P = P, + ZP{’“L Py, = P, + ZPQ[’“].
k>1 k>1
Then the condition [P,, X] = 0 (a = 1,2) implies that
d—
do(Xa)+ ) [PH X4 4] =0, a=1,2.
k=1

&)

When d = 2, we obtain d;(X2) = 0, d2(X2) = 0, so we have X5 = 0. Then, by
induction on d, one can show that X; =0 for d =2,3,...,s0 X =0.

To prove Part (b), we also expand X, P, and P, as above. We need to show
that if X satisfies d1(X;) = 0, do(X;) = 0, then there exist X5, X3,... such

that
d—1

do(Xa) + D [PH X4 4] =0, a=12. (4.1)
k=1
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Without loss of generality, we can assume that Pi" = 0 (see Part (b) of
Corollary 4.12), then we can take X5 = 0 directly.

The existence of Xy (d > 3) can be proved by induction on d. Suppose we
have obtained Xa,..., X4_1, and we are to find X;. Denote by

d—1
Wo==> [P, Xs 4], a=12
k=1

then Xy satisfy di(X4) = Wi and da(X4) = Wa.
We assert that di (W) = 0. By using the Jacobi identity, we have

d—1

ay(W1) = > (1 (P), Xa ] + [P, da (Xa)])

k=1

Note that P; is a Hamiltonian structure, so we have
L il pl )
J k—j
)+ 5 Zl [, Pl
j=

From the above identity and (4.1) with X, replaced by X4_x, one can show
that di(W7) = 0. Similarly, we have do(W5) = 0.

Since HC%_H(]:', dy) = 0, there exists Y € FJ such that W) = dy(Y), then
the general solution to di(Xy) = Wi can be written as Xy = Y + dy(Z) for
arbitrary Z € F3_,. Then the equation dy(Xy4) = Wy becomes dda(Z) = Q,
where Q = da(Y') — Wa.

It is easy to see that da(Q) = 0. One can also show that d;(Q) = 0 by using
the condition [P}, Py] = 0, s0 Q € fd+1ﬂKer(d1)ﬂKer(d2) Note that d+1 > 4,
so BH2(F,dy,dy) =2 0, so there must exist Z € F9_, such that Q = dydy(Z).
The existence of X, is proved. O

5 Central Invariants

5.1 Definition and properties

In this subsection, we explain how to compute the central invariants of a de-
formed semisimple bihamiltonian structure.

Let (Py, P;) be a semisimple bihamiltonian structure, (Py, Py) be a deforma-
tion of (P, Py), and P,, P, (a = 1,2) be the corresponding matrix differential
operators in canonical coordinates. Expand Pa (a = 1,2) with respect to the
standard gradation

s+1
et me ey (Sornr)
s>1 \t=0
where a =1, 2, Pf‘fa € Asp1-¢. It is easy to see that P~g "s+1,q 1s & tensor on M.

The central invariants of (Py, P) are defined as

1 ]1]“22 )‘1121)

— —NP D (5.1)
P3's o 2,31 )

307 2 »)
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where i = 1,...,n, \;’s are the canonical coordinates, and f*’s are the diagonal
entries of the first metric (see Definition 4.5 and Theorem 4.6). Note that
the semisimplicity of (Pp, P») plays a crucial role in the definition of central
invariants: (i) A;’s are not constants, so we can use them as coordinates; (ii)
they are distinct, so the denominator in the above formula never vanish.

Theorem 5.1 (a) The central invariants are invariant under gauge transfor-
mations.

(b) The i-th central invariant c;(\) only depends on \'.

(¢) The cohomology class corresponding to the infinitesimal deformation of
(Py, P,) has a representative

Q = daod;y </ (Z ci()\i))\i,l log)\“) d.%‘) c ]A:g

i=1

The proof of this theorem is simple but tedious [10], so we omit it.

In Part (c), we give @ in the form dody(J). This expression looks confusing,
since elements of the form dad (J) = —dydz2(J) should be exact in the cohomol-
ogy group BH?2 (]:' ,d1,d2). But @ is indeed not trivial, because the density of
the local functional J given above is not a differential polynomial, so J ¢ FO.
This expression shows that if we enlarge the group of gauge transformation,
then there is no nontrivial infinitesimal deformations. This result is called the
quasi-triviality theorem [10].

Theorem 5.2 Denote by p =[], \!, A= A[p~1], F = A/dA.

(a) For any deformation (P1,P,) of a semisimple bihamiltonian structure
(P1, P2), there exists Z € FL, such that (e*17(Py), ez (Py)) = (P, Ps).

(b) Let X € FL be a bihamiltonian vector field of (Py, Py) with leading term
X, € FI, then e242(X) = X;.

This theorem implies that Dubrovin-Zhang’s QT Axiom is a corollary of the BH
Axiom, so the QT Axiom can be removed from their construction.

5.2 Example: Frobenius manifolds

Let (Py, Py) be the bihamiltonian structure associated to a semisimple Frobenius
manifold (see Example 4.7). In [13], Dubrovin and Zhang constructed a genus
one deformation of (Py, P) satisfying their VS Axiom [14]. Note that a genus
one deformation is exactly an infinitesimal deformation of degree 3. So it is
natural to ask: what are its central invariants?
By checking the expressions given in [13], the tensors used in (5.1) read
i L ki ki
fr= 2 P1,2,1 =0, P1,2,2 =0,

il

g 1 Yin 7/)3'1)
P“ — § i -+ ,
RS DIV #iWJ (%‘1 i1

ji 1 A Y1 | Yn
Pyyg =5 + Vi ( +-=,
232 721/1;11 121/’?1 ; ! Vi1 Ya
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then we immediately obtain the central invariants

1
= =cn =g
In [36], Zhang showed that if a deformation (P, P;) admits a tau function,
then its central invariants must be constant. In this case, the genus one free

energy has the form
n

Fl = ZC@ log()\i’l) —+ G()\)

i=1
When ¢; =1/24 (i = 1,...,n), we obtain the well-known formula for genus one
free energy of a 5em151mple cohomological field theory

—log (HA“) +G(A

We conjecture that the converse propositions of the above results are also
true.

Conjecture 5.3 Let (Py, Py) be a deformation of (Py, Py) with central invari-
ants C1,...,Cp.

(a) If ¢; (i = 1,...,n) are all constant, then the corresponding integrable
hierarchy admits a tau structure.

(b) if ¢; = 1/24 (i = 1,...,n), then the corresponding integrable hierarchy
has linearizable Virasoro symmetries.

If these conjectures hold true, then Dubrovin-Zhang’s TS Axiom and VS Axiom
can be replaced by the above conditions on central invariants.

5.3 Example: Drinfeld-Sokolov hierarchy

Let g be a simple Lie algebra of dimension m and rank n, and u',...,u™ be a

set of basis. Suppose
[u®, uf] = C’ﬁfﬂu”’.

Let M = g*, and vy, ..., V,, be dual basis of u!, ..., u™, then any element ¢ € M
can be written as
q=uvq, u®eR.

The bracket
{uo‘,uﬁ} — Cg‘ﬁuv

defines a Poisson structure on M, which is called the Lie-Poisson structure.
The Lie-Poisson structure defines a Hamiltonian structure Py € F3:

Py :/(csﬁuwaaﬁ) dz.

Its action on F,G € F° is given by

wg ~ OF 0G
{F,G}p0/<C’,YB Wéua 5u6)dx (5.2)
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Note that C$Pu” = (g, [u®, u”]), where (,) is the pairing between g* and g. If
we introduce a notation

OF
grad(F) = M—auo‘ cEA®g,

then the Poisson bracket (5.2) becomes

(.G}, = [ (0 rad(F). grad (G .

Let (,)y be a invariant non-degenerate symmetric bilinear form on g, we can
identify g* and ¢ such that
(¢,") =(q '>g'

We always assume this identification, then the Poisson bracket (5.2) can be also
written as

(F.G)n, = [ (grad(P), [grad(G). al)gd

Define n# = (u®,u”),. The Hamiltonian structure Py admit a degree one
deformation

o / (CoPu 100805 — 1°%0,03) da.
The action of P on F,G € FO reads

(F.G}r = [ (grad(F). [srad(G), 0 + ad

Here we assume that [0, a] = —[a,d] = 9(a) fora € A® g.

Let Xo = [ (u§0,)dz, where u,...,uj* € R are some fixed constants.
Then it is easy to see that [Xo,[Xo, P]] = 0, so ([Xo, P], P) forms an exact
bihamiltonian structure. We rename P; = [Xy, P], P, = P. The bihamiltonian
structure (Pp, P) is called the Zakharov-Shabat bihamiltonian structure.

The second component of the Zakharov-Shabat bihamiltonian structure can
be regarded as a reduction of the deformed Hamiltonian structure mentioned in
Example 3.8. The Drinfeld-Sokolov bihamiltonian structure is a further reduc-
tion of the Zakharov-Shabat one. A detailed description of the Drinfeld-Sokolov
bihamiltonian structure would make the present lecture notes too long, so we
only give the final result.

Theorem 5.4 ([11]) The Drinfeld-Sokolov bihamiltonian structure (Q1, Q2) is
an exact bihamiltonian structure on a submanifold V.C M with dimV = n.

(a) The leading term of (Q1,Q2) coincides with the bihamiltonian structure
associated to the Frobenius structure on the orbit space of the Weyl group of g.
In particular, it is semisimple.

(b) The central invariants of (Q1,Q2) are given by (up to a rearrangement)

VAP,
Ci:7<az;lgz>g’ i:l,...,n,
where {a,...,a)} is a collection of simple coroots of g.
(¢) If we choose ()4 to be the normalized one
1
< ) >B = W< ) >Ka
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where hY is the dual Coxeter number of g, and {, )k is the Killing form, then
the central invariants for g of type X,, is given by the following table.

Xn c1 ... Cp—_1 Cp
An 214 i 214
(5.3)
Dn, Lo L A
B, n=678 & .. L& L
Fn, m=4 i 214 % %
Gp, n=2 % i

When g is of ADE type, the central invariants are all equal to 1/24, so
the Drinfeld-Sokolov bihamiltonian structure is equivalent to Dubrovin-Zhang’s
deformation [13, 15], and the total descendant potential coincides with the one
given by Givental’s formula. Recently, Fan, Jarvis and Ruan rigorously define
the Landau-Ginzburg A-model for a quasi-homogeneous singularity, which is
called the FJRW theory. They also proved that the total descendant potential
of FJRW theory for an ADFE singularity is given by Givental’s formula, so it
is a tau function of the corresponding Drinfeld-Sokolov hierarchy. This result
is called the ADE Witten conjecture. Please see [18, 19, 26, 21, 33, 34, 27] for
more details.

When g is of BCFG type, the central invariants are constant, but not all
equal to 1/24. Define R =24 %" | ¢;, then we have

g Bn Cn F4 G2
R|n+1|2n—-1| 6 4

It is well-known that a simple Lie algebra of B,, type can be embedded into a
simple Lie algebra of D,,;1 type as the fixed locus of an order two automorphism.
Similarly, C),, can be embedded into As,_1, F4y can be embedded into Eg, and
G5 can be embedded into D4. So the number R gives exactly the rank of the
ambient Lie algebra. This observation suggests us how to prove the generalized
Witten conjecture of BCFG type [27].

Remark 5.5 The above two examples both have constant central invariants.
There also exist bihamiltonian structures possessing non-constant central invari-
ats. For example, the bihamiltonian structure of the Camassa-Holm hierarchy
(see Example 3.2) has c(\) = % Its two-component generalization (see [28],
[3]) has
A2 A2
>\ = 71 A = 72.
alh) =g, el)=g;
We also considered its multi-components generalization in [4], and more com-
plicated central invariants arose there.
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The Camassa-Holm equation and its generalization are very popular recently
in the area like PDE analysis or hydrodynamic, because they often have inter-
esting weak solutions and wave-breaking phenomena. They are also the main
source of our work [29], whose results play an important role in the present
paper. However, there seems no direct connection between such integrable hier-
archies and Gromov-Witten theories.
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